Exciton-polaritons: resonant drive and interactions (II)

Sylvain Ravets

sylvain.ravets@c2n.upsaclay.fr

Master QLMN

07-02-2022

Driven-dissipative Gross-Pitaevskii equation

Full Hamiltonian for the lower polaritons (k-space):

$$\hat{H}_{\rm LP} \simeq \sum_{\mathbf{k}} \hbar \omega_X(\mathbf{k}) \hat{p}_{\mathbf{k}}^{\dagger} \hat{p}_{\mathbf{k}} + \frac{V_{\mathbf{0}}^{XX}}{2} |X_0|^4 \sum_{\mathbf{k}, \mathbf{k'q}} \hat{p}_{k+q}^{\dagger} \hat{p}_{k-q}^{\dagger} \hat{p}_k \hat{p}_k$$

Full Hamiltonian for the lower polaritons (real-space):

$$\hat{H}_{\rm LP} = -\frac{\hbar^2}{2m_{\rm LP}} \int d^2 \mathbf{r} \hat{\Psi}_{\rm LP}^{\dagger}(\mathbf{r}) \nabla_{\mathbf{r}}^2 \hat{\Psi}_{\rm LP}(\mathbf{r}) + |X_0|^4 \frac{V_0^{XX}}{2} \int d^2 \mathbf{r} \hat{\Psi}_{\rm LP}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\rm LP}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\rm LP}(\mathbf{r}) \hat{\Psi}_{\rm LP}(\mathbf{r})$$

Heisenberg equation for the field operator:

$$i\hbar\frac{d}{dt}\hat{\Psi}_{\rm LP}(\mathbf{r},t) = -\frac{\hbar^2}{2m_{\rm LP}}\nabla_{\mathbf{r}}^2\hat{\Psi}_{\rm LP}(\mathbf{r},t) + U\hat{\Psi}_{\rm LP}^{\dagger}(\mathbf{r},t)\hat{\Psi}_{\rm LP}(\mathbf{r},t)\hat{\Psi}_{\rm LP}(\mathbf{r},t)$$

Mean field approximation (classical field):

$$i\hbar\frac{d}{dt}\Psi_{\rm LP}(\mathbf{r},t) = -\frac{\hbar^2}{2m_{\rm LP}}\nabla_{\mathbf{r}}^2\Psi_{\rm LP}(\mathbf{r},t) + U\Psi_{\rm LP}^*(\mathbf{r},t)\Psi_{\rm LP}(\mathbf{r},t)\Psi_{\rm LP}(\mathbf{r},t)$$

Driven-dissipative Gross-Pitaevskii equation

Add terms for dissipation and laser drive:

"Driven-dissipative Gross Pitaevskii equation":

$$i\frac{d}{dt}\psi = \left[\omega_0 - \frac{\hbar}{2m}\nabla^2 + gn - i\frac{\gamma}{2}\right]\psi + iF$$

Multi-stability

Scanning the laser energy at fixed laser power.

 $\omega_p - \omega_{LP}$

Multi-stability

Stability of the solutions

Driven-dissipative GPE:
$$i\frac{d}{dt}\psi = \left[\omega_0 - \frac{\hbar}{2m}\nabla^2 + gn - i\frac{\gamma}{2}\right]\psi + iF$$

Assume **k=0**, $F = \sqrt{\frac{\gamma}{2}} F_0 e^{-i\omega_{\rm p}t}$ and search solutions of the form $\psi(\mathbf{r}, t) = \psi_{\rm ss} e^{-i\omega_{\rm p}t}$

Steady-state solution:
$$\left[\omega_{\rm p} - (\omega_0 + g |\psi_{\rm ss}|^2) + i\frac{\gamma}{2}\right]\psi_{\rm ss} = i\sqrt{\frac{\gamma}{2}}F_0$$
$$\left[(\omega_p - (\omega_0 + gN_{\rm LP}))^2 + \left(\frac{\gamma}{2}\right)^2\right]N_{\rm LP} = \frac{\gamma}{2}|F_0|^2$$

Consider small perturbation on top of steady-state solution:

$$\psi(\mathbf{r},t) = \sqrt{N_{\rm LP}}e^{-i\omega_{\rm p}t} + \delta\psi_{\rm LP}e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega_{\rm p}t)}$$

Steady-state solution of GPE

Linearized GPE

$$i\partial_t \delta \psi = \left(\omega_0 + \frac{\hbar k^2}{2m_{\rm LP}} - \omega_{\rm p} - i\frac{\gamma}{2}\right)\delta\psi + \underline{2gN_{\rm LP}\delta\psi + gN_{\rm LP}\delta\psi^*}$$

Only keep first order terms in $\delta\psi$ and $\delta\psi^*$

Linearized GPE

$$\begin{split} \dot{i}\partial_t \delta\psi &= \left(\omega_0 + \frac{\hbar k^2}{2m_{\rm LP}} - \omega_{\rm p} - i\frac{\gamma}{2}\right)\delta\psi + 2gN_{\rm LP}\delta\psi + gN_{\rm LP}\delta\psi^* \\ -i\partial_t \delta\psi^* &= \left(\omega_0 + \frac{\hbar k^2}{2m_{\rm LP}} - \omega_{\rm p} + i\frac{\gamma}{2}\right)\delta\psi^* + 2gN_{\rm LP}\delta\psi^* + gN_{\rm LP}\delta\psi \\ \dot{i}\partial_t \left(\frac{\delta\psi}{\delta\psi^*}\right) &= \left(\begin{bmatrix}\omega_{\rm LP} + \frac{\hbar k^2}{2m_{\rm LP}} + 2gN_{\rm LP}\end{bmatrix} - \omega_{\rm p} - i\frac{\gamma}{2} & gN_{\rm LP} \\ -gN_{\rm LP} & \omega_{\rm p} - \left[\omega_{\rm LP} + \frac{\hbar k^2}{2m_{\rm LP}} + 2gN_{\rm LP}\right] - i\frac{\gamma}{2}\right)\left(\frac{\delta\psi}{\delta\psi^*}\right) \\ &i\partial_t \left(\frac{\delta\psi}{\delta\psi^*}\right) = \mathcal{L}_{\rm Bog}\left(\frac{\delta\psi}{\delta\psi^*}\right) \end{split}$$

Linearized equation.

Unstable solution when at least one of the eigenvalues has a positive imaginary part.

Linearized GPE

$$i\partial_t \delta \psi = \left(\omega_0 + \frac{\hbar k^2}{2m_{\rm LP}} - \omega_{\rm p} - i\frac{\gamma}{2}\right) \delta \psi + 2gN_{\rm LP}\delta\psi + gN_{\rm LP}\delta\psi^*$$
$$-i\partial_t \delta \psi^* = \left(\omega_0 + \frac{\hbar k^2}{2m_{\rm LP}} - \omega_{\rm p} + i\frac{\gamma}{2}\right) \delta \psi^* + 2gN_{\rm LP}\delta\psi^* + gN_{\rm LP}\delta\psi$$

$$i\partial_t \begin{pmatrix} \delta\psi\\ \delta\psi^* \end{pmatrix} = \begin{pmatrix} \left[\omega_{\rm LP} + \frac{\hbar k^2}{2m_{\rm LP}} + 2gN_{\rm LP}\right] - \omega_{\rm p} - i\frac{\gamma}{2} & gN_{\rm LP}\\ -gN_{\rm LP} & \omega_{\rm p} - \left[\omega_{\rm LP} + \frac{\hbar k^2}{2m_{\rm LP}} + 2gN_{\rm LP}\right] - i\frac{\gamma}{2} \end{pmatrix} \begin{pmatrix} \delta\psi\\ \delta\psi^* \end{pmatrix}$$
$$i\partial_t \begin{pmatrix} \delta\psi\\ \delta\psi^* \end{pmatrix} = \mathcal{L}_{\rm Bog} \begin{pmatrix} \delta\psi\\ \delta\psi^* \end{pmatrix}$$

$$M = \begin{pmatrix} \omega_{LP} + 2 * g * n - \omega_p - I * \gamma/2 & g * n \\ -g * n & -\omega_{LP} - 2 * g * n + \omega_p - I * \gamma/2 \end{pmatrix};$$

(*MatrixForm[M]*)

FullSimplify[Eigenvalues[M]]

$$\left\{-\frac{\mathbb{i}\gamma}{2} - \sqrt{(g n + \omega_{LP} - \omega_{p}) (3 g n + \omega_{LP} - \omega_{p})} , -\frac{\mathbb{i}\gamma}{2} + \sqrt{(g n + \omega_{LP} - \omega_{p}) (3 g n + \omega_{LP} - \omega_{p})} \right\}$$

Unstable solutions

$$\omega_{\text{Bog}} = -i\frac{\gamma}{2} \pm \sqrt{(\omega_{\text{LP}}(k) + gN_{LP} - \omega_{\text{P}})(\omega_{\text{LP}}(k) + 3gN_{LP} - \omega_{\text{P}})}$$

Stability condition at *k*=0:

$$(gN_{\rm LP} - \Delta)(3gN_{\rm LP} - \Delta) \le -\frac{\gamma^2}{4}$$
 (with $\Delta = \omega_{\rm p} - \omega_{\rm LP}$)
 $3(gN_{\rm LP})^2 - 4\Delta(gN_{\rm LP}) + \Delta^2 + \frac{\gamma^2}{4} \le 0$

Second order polynomial in gN_{LP} with real roots for positive discriminant:

$$16\Delta^2 - 12(\Delta^2 + \frac{\gamma^2}{4}) \ge 0 \quad \Rightarrow \quad \Delta \ge \frac{\sqrt{3}}{2} \quad \text{or} \quad \Delta \le -\frac{\sqrt{3}}{2}$$

Two real roots:
$$gN_{\text{LP}}^{\pm} = \frac{2}{3}\Delta \pm \frac{1}{3}\sqrt{\Delta^2 - 3\left(\frac{\gamma}{2}\right)^2}$$

Positive only when $\Delta \ge 0$

Unstable solutions

Existence of unstable solutions when:

$$\omega_{\rm p} \ge \omega_{\rm LP} + \frac{\sqrt{3}}{2}\gamma$$

Obtained in the range:

$$\frac{2}{3}\Delta - \frac{1}{3}\sqrt{\Delta^2 - 3\left(\frac{\gamma}{2}\right)^2} \le gN_{\rm LP} \le \frac{2}{3}\Delta + \frac{1}{3}\sqrt{\Delta^2 - 3\left(\frac{\gamma}{2}\right)^2}$$

Unstable solutions

One unstable solution \Rightarrow **BISTABILITY**

LOW EXCITATION POWER ($N_{LP} = 0.1$)

Bogoliubov spectrum of excitations LOW EXCITATION POWER ($N_{LP} = 0.1$)

$$gN_{\rm LP} \ll \Delta \Rightarrow \omega_{\rm Bog} \simeq -i\frac{\gamma}{2} \pm [\omega_{\rm LP}(k) - \omega_{\rm P}] \Rightarrow \Re[\omega_{\rm Bog}] \simeq \omega_{\rm LP}(k) - \omega_{\rm P}$$

 \Rightarrow One recovers the polariton dispersion (linear regime).

LOW EXCITATION POWER ($N_{LP} = 0.1$)

$$gN_{\rm LP} \ll \Delta \Rightarrow \omega_{\rm Bog} \simeq -i\frac{\gamma}{2} \pm [\omega_{\rm LP}(k) - \omega_{\rm P}] \Rightarrow \Re[\omega_{\rm Bog}] \simeq \omega_{\rm LP}(k) - \omega_{\rm P}$$

HIGH EXCITATION POWER ($N_{LP} = 27$)

HIGH EXCITATION POWER ($N_{LP} = 27$)

 $gN_{\rm LP} \gg \Delta \Rightarrow$ Taylor expansion for small k

$$\frac{\hbar k^2}{2m_{\rm LP}} - \Delta \ll g N_{\rm LP}$$

$$\omega_{\text{Bog}} = -i\frac{\gamma}{2} \pm \left(\frac{\hbar}{2m_{\text{LP}}}k^2 + gN_{LP} - \Delta\right)^{1/2} \left(\frac{\hbar}{2m_{\text{LP}}}k^2 + 3gN_{LP} - \Delta\right)^{1/2}$$
$$\simeq -i\frac{\gamma}{2} \pm \sqrt{3}gN_{\text{LP}} \left[\left(1 + \frac{1}{2gN_{\text{LP}}} \left(\frac{\hbar k^2}{2m_{\text{LP}}} - \Delta\right)\right) \left(1 + \frac{1}{6gN_{\text{LP}}} \left(\frac{\hbar k^2}{2m_{\text{LP}}} - \Delta\right)\right) \right]$$
$$\simeq -i\frac{\gamma}{2} \pm \left[\frac{2}{\sqrt{3}}(\omega_{\text{LP}}(k) - \omega_{\text{p}}) + \sqrt{3}gN_{\text{LP}}\right]$$
$$\Re[\omega_{\text{Bog}}] \simeq \pm \left[\frac{2}{\sqrt{3}}(\omega_{\text{LP}}(k) - \omega_{\text{p}}) + \sqrt{3}gN_{\text{LP}}\right]$$

 \Rightarrow Two parabolic dispersion shifted by the interaction.

HIGH EXCITATION POWER ($N_{LP} = 27$)

$$gN_{\rm LP} \gg \Delta \Rightarrow \Re[\omega_{\rm Bog}] \simeq \pm \left[\frac{2}{\sqrt{3}}(\omega_{\rm LP}(k) - \omega_{\rm p}) + \sqrt{3}gN_{\rm LP}\right]$$

POLARITON POPULATION WITHIN UNSTABLE RANGE ($N_{LP} = 13$)

POLARITON POPULATION WITHIN UNSTABLE RANGE ($N_{LP} = 13$)

 \Rightarrow Expect positive imaginary part next to k = 0.

MEDIUM EXCITATION POWER $(gN_{LP} \approx \Delta)$

Bogoliubov spectrum of excitations **MEDIUM EXCITATION POWER** ($gN_{LP} \approx \Delta$)

$$\omega_{\rm Bog} = -i\frac{\gamma}{2} \pm \sqrt{(\omega_{\rm LP}(k) + gN_{LP} - \omega_{\rm P})(\omega_{\rm LP}(k) + 3gN_{LP} - \omega_{\rm P})}$$

$$gN_{\rm LP} \simeq \Delta \quad \Rightarrow \quad \omega_{\rm Bog} \simeq -i\frac{\gamma}{2} \pm \sqrt{\omega_{\rm LP}(k)(\omega_{\rm LP}(k) + 2gN_{\rm LP})}$$

Taylor expansion (large k) $\omega_{ m LP}(k) \gg 2g N_{ m LP}$

 $\Rightarrow \Re[\omega_{\rm Bog}] \simeq \pm [\omega_{\rm LP}(k) + gN_{\rm LP}]$

Parabolic dispersion

Taylor expansion (small k)

 $2gN_{\rm LP}\gg\omega_{\rm LP}(k)$

$$\Rightarrow \Re[\omega_{\rm Bog}] \simeq \pm \sqrt{\frac{\hbar}{m}} g N_{\rm LP} \times k$$

Linear dispersion

 \Rightarrow Phonon-like dispersion

"Speed of sound": $c_{
m s}=\sqrt{\hbar g N_{
m LP}/m_{
m LP}}$

MEDIUM EXCITATION POWER $(gN_{LP} \approx \Delta)$

$$gN_{\rm LP} \simeq \Delta \quad \Rightarrow \quad \omega_{\rm Bog} \simeq -i\frac{\gamma}{2} \pm \sqrt{\omega_{\rm LP}(k)(\omega_{\rm LP}(k) + 2gN_{\rm LP})}$$

https://doi.org/10.1038/s41467-019-11886-3

OPEN

Dispersion relation of the collective excitations in a resonantly driven polariton fluid

Petr Stepanov¹, Ivan Amelio², Jean-Guy Rousset^{1,3}, Jacqueline Bloch⁴, Aristide Lemaître¹, Alberto Amo⁵, Anna Minguzzi⁶, Iacopo Carusotto² & Maxime Richard¹

https://doi.org/10.1038/s41467-019-11886-3

OPEN

Dispersion relation of the collective excitations in a resonantly driven polariton fluid

Petr Stepanov¹, Ivan Amelio², Jean-Guy Rousset^{1,3}, Jacqueline Bloch⁴, Aristide Lemaître⁶, Alberto Amo⁵, Anna Minguzzi⁶, Iacopo Carusotto² & Maxime Richard⁶

The special case of sonic dispersion relation

No available Bogoliubov mode at the pump energy ⇒ Consequences for polariton superfluidity

Polariton superfluidity

Superfluidity is "the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy"

Induce polariton flow \Rightarrow pump at $k_p \neq 0$

Modified Bogoliubov dispersion:

$$\omega_{\rm Bog} = (\mathbf{k} - \mathbf{k}_{\rm p}) \cdot \frac{\hbar \mathbf{k}_{\rm p}}{m_{\rm LP}} - i\frac{\gamma}{2} \pm \sqrt{\left(\omega_{\rm LP}(\mathbf{k}_{\rm p}) + \frac{\hbar (\mathbf{k} - \mathbf{k}_{\rm p})^2}{2m_{\rm LP}} + gN_{\rm LP} - \omega_{\rm p}\right) \left(\omega_{\rm LP}(\mathbf{k}_{\rm p}) + \frac{\hbar (\mathbf{k} - \mathbf{k}_{\rm p})^2}{2m_{\rm LP}} + 3gN_{\rm LP} - \omega_{\rm p}\right)}$$

Subsonic flow $V_{\rm p} < C_{\rm s}$

$$gN_{\rm LP} \simeq \Delta \quad \Rightarrow \quad \omega_{\rm Bog}(\mathbf{k}) \simeq (\mathbf{k} - \mathbf{k}_{\rm p}) \cdot \frac{\hbar \mathbf{k}_{\rm p}}{m_{\rm LP}} \pm c_{\rm s} \left| \mathbf{k} - \mathbf{k}_{\rm p} \right|$$

Subsonic flow $V_{\rm p} < C_{\rm s}$

$$gN_{\rm LP} \simeq \Delta \quad \Rightarrow \quad \omega_{\rm Bog}(\mathbf{k}) \simeq (\mathbf{k} - \mathbf{k}_{\rm p}) \cdot \frac{\hbar \mathbf{k}_{\rm p}}{m_{\rm LP}} \pm c_{\rm s} \left| \mathbf{k} - \mathbf{k}_{\rm p} \right|$$

$$gN_{\rm LP} \simeq \Delta \quad \Rightarrow \quad \omega_{\rm Bog}(\mathbf{k}) \simeq (\mathbf{k} - \mathbf{k}_{\rm p}) \cdot \frac{\hbar \mathbf{k}_{\rm p}}{m_{\rm LP}} \pm c_{\rm s} \left| \mathbf{k} - \mathbf{k}_{\rm p} \right|$$

Probing Microcavity Polariton Superfluidity through Resonant Rayleigh Scattering

Iacopo Carusotto^{1,2,*} and Cristiano Ciuti³

Subsonic case ¹Laboratoire Kastler Brossel, École Normale Supérieure, 24 rue Lhomond, 75005 Parts ²CRS BEC-INFM and Dipartimento di Fisica, Università di Trento, I-38050 Povo, Italy ³Laboratoire Pierre Aigrain, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France (Received 23 April 2004; published 13 October 2004)

We study the motion of a polariton fluid injected into a planar microcavity by a continuous wave laser. In the presence of static defects, the spectrum of the Bogoliubov-like excitations reflects onto the shape and intensity of the resonant Rayleigh scattering emission pattern in both momentum and real space.

Probing Microcavity Polariton Superfluidity through Resonant Rayleigh Scattering

Iacopo Carusotto^{1,2,*} and Cristiano Ciuti³

Subsonic case ¹Laboratoire Kastler Brossel, École Normale Supérieure, 24 rue Lhomond, 75005 Paris ²CRS BEC-INFM and Dipartimento di Fisica, Università di Trento, I-38050 Povo, Ital ³Laboratoire Pierre Aigrain, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France (Received 23 April 2004; published 13 October 2004)

We study the motion of a polariton fluid injected into a planar microcavity by a continuous wave laser. In the presence of static defects, the spectrum of the Bogoliubov-like excitations reflects onto the shape and intensity of the resonant Rayleigh scattering emission pattern in both momentum and real space.

Bogoliubov-Čerenkov Radiation in a Bose-Einstein Condensate Flowing against an Obstacle

I. Carusotto,¹ S. X. Hu,^{2,*} L. A. Collins,² and A. Smerzi^{2,1}

¹CNR-BEC-INFM, Trento, I-38050 Povo, Italy ²Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA (Received 25 July 2006; published 27 December 2006)

Supersonic case We study the density modulation that appears in a Bose-Einstein condensate flowing with supersonic velocity against an obstacle.

Conical density modulation downstream of the defect: Cerenkov regime.

Bogoliubov-Čerenkov Radiation in a Bose-Einstein Condensate Flowing against an Obstacle

I. Carusotto,¹ S. X. Hu,^{2,*} L. A. Collins,² and A. Smerzi^{2,1}

¹CNR-BEC-INFM, Trento, I-38050 Povo, Italy ²Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA (Received 25 July 2006; published 27 December 2006)

Supersonic case We study the density modulation that appears in a Bose-Einstein condensate flowing with supersonic velocity against an obstacle.

LET

TERS

LET

TERS

LET

TERS

LETTERS

Conclusion

- Cavity exciton-polaritons \Rightarrow "Fluids of light"
- Optical platform for driven-dissipative nonlinear hydrodynamics
- Superfluidity is just one example. Plenty of other interesting effects:
 - Solitons, vortices, parametric oscillations, acoustic black holes
- Study synthetic polaritonic matter in lattices (see next class)
- Prospects for quantum polaritonic (current research topic)